Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in cellular and infection microbiology ; 13, 2023.
Article in English | EuropePMC | ID: covidwho-2288497

ABSTRACT

Background There is an urgent need to find an effective and accurate method for triaging coronavirus disease 2019 (COVID-19) patients from millions or billions of people. Therefore, this study aimed to develop a novel deep-learning approach for COVID-19 triage based on chest computed tomography (CT) images, including normal, pneumonia, and COVID-19 cases. Methods A total of 2,809 chest CT scans (1,105 COVID-19, 854 normal, and 850 non-3COVID-19 pneumonia cases) were acquired for this study and classified into the training set (n = 2,329) and test set (n = 480). A U-net-based convolutional neural network was used for lung segmentation, and a mask-weighted global average pooling (GAP) method was proposed for the deep neural network to improve the performance of COVID-19 classification between COVID-19 and normal or common pneumonia cases. Results The results for lung segmentation reached a dice value of 96.5% on 30 independent CT scans. The performance of the mask-weighted GAP method achieved the COVID-19 triage with a sensitivity of 96.5% and specificity of 87.8% using the testing dataset. The mask-weighted GAP method demonstrated 0.9% and 2% improvements in sensitivity and specificity, respectively, compared with the normal GAP. In addition, fusion images between the CT images and the highlighted area from the deep learning model using the Grad-CAM method, indicating the lesion region detected using the deep learning method, were drawn and could also be confirmed by radiologists. Conclusions This study proposed a mask-weighted GAP-based deep learning method and obtained promising results for COVID-19 triage based on chest CT images. Furthermore, it can be considered a convenient tool to assist doctors in diagnosing COVID-19.

2.
Front Cell Infect Microbiol ; 13: 1116285, 2023.
Article in English | MEDLINE | ID: covidwho-2288512

ABSTRACT

Background: There is an urgent need to find an effective and accurate method for triaging coronavirus disease 2019 (COVID-19) patients from millions or billions of people. Therefore, this study aimed to develop a novel deep-learning approach for COVID-19 triage based on chest computed tomography (CT) images, including normal, pneumonia, and COVID-19 cases. Methods: A total of 2,809 chest CT scans (1,105 COVID-19, 854 normal, and 850 non-3COVID-19 pneumonia cases) were acquired for this study and classified into the training set (n = 2,329) and test set (n = 480). A U-net-based convolutional neural network was used for lung segmentation, and a mask-weighted global average pooling (GAP) method was proposed for the deep neural network to improve the performance of COVID-19 classification between COVID-19 and normal or common pneumonia cases. Results: The results for lung segmentation reached a dice value of 96.5% on 30 independent CT scans. The performance of the mask-weighted GAP method achieved the COVID-19 triage with a sensitivity of 96.5% and specificity of 87.8% using the testing dataset. The mask-weighted GAP method demonstrated 0.9% and 2% improvements in sensitivity and specificity, respectively, compared with the normal GAP. In addition, fusion images between the CT images and the highlighted area from the deep learning model using the Grad-CAM method, indicating the lesion region detected using the deep learning method, were drawn and could also be confirmed by radiologists. Conclusions: This study proposed a mask-weighted GAP-based deep learning method and obtained promising results for COVID-19 triage based on chest CT images. Furthermore, it can be considered a convenient tool to assist doctors in diagnosing COVID-19.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Triage/methods , Retrospective Studies , Pneumonia/diagnosis , Neural Networks, Computer , Tomography, X-Ray Computed/methods
3.
Pathogens ; 10(9)2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1410521

ABSTRACT

SARS-CoV-2 infection has caused a global pandemic that has severely damaged both public health and the economy. The nucleocapsid protein of SARS-CoV-2 is multifunctional and plays an important role in ribonucleocapsid formation and viral genome replication. In order to elucidate its functions, interaction partners of the SARS-CoV-2 N protein in human cells were identified via affinity purification and mass spectrometry. We identified 160 cellular proteins as interaction partners of the SARS-CoV-2 N protein in HEK293T and/or Calu-3 cells. Functional analysis revealed strong enrichment for ribosome biogenesis and RNA-associated processes, including ribonucleoprotein complex biogenesis, ribosomal large and small subunits biogenesis, RNA binding, catalysis, translation and transcription. Proteins related to virus defence responses, including MOV10, EIF2AK2, TRIM25, G3BP1, ZC3HAV1 and ZCCHC3 were also identified in the N protein interactome. This study comprehensively profiled the viral-host interactome of the SARS-CoV-2 N protein in human cells, and the findings provide the basis for further studies on the pathogenesis and antiviral strategies for this emerging infection.

4.
J Thorac Dis ; 12(10): 5336-5346, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-934699

ABSTRACT

BACKGROUND: The study is designed to explore the chest CT features of different clinical types of coronavirus disease 2019 (COVID-19) pneumonia based on a Chinese multicenter dataset using an artificial intelligence (AI) system. METHODS: A total of 164 patients confirmed COVID-19 were retrospectively enrolled from 6 hospitals. All patients were divided into the mild type (136 cases) and the severe type (28 cases) according to their clinical manifestations. The total CT severity score and quantitative CT features were calculated by AI pneumonia detection and evaluation system with correction by radiologists. The clinical and CT imaging features of different types were analyzed. RESULTS: It was observed that patients in the severe type group were older than the mild type group. Round lesions, Fan-shaped lesions, crazy-paving pattern, fibrosis, "white lung", pleural thickening, pleural indentation, mediastinal lymphadenectasis were more common in the CT images of severe patients than in the mild ones. A higher total lung severity score and scores of each lobe were observed in the severe group, with higher scores in bilateral lower lobes of both groups. Further analysis showed that the volume and number of pneumonia lesions and consolidation lesions in overall lung were higher in the severe group, and showed a wider distribution in the lower lobes of bilateral lung in both groups. CONCLUSIONS: Chest CT of patients with severe COVID-19 pneumonia showed more consolidative and progressive lesions. With the assistance of AI, CT could evaluate the clinical severity of COVID-19 pneumonia more precisely and help the early diagnosis and surveillance of the patients.

5.
Engineering (Beijing) ; 7(10): 1441-1451, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-733861

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has led to worldwide efforts to understand the biological traits of the newly identified human coronavirus (HCoV-19) virus. In this mass spectrometry (MS)-based study, we reveal that out of 21 possible glycosites in the HCoV-19 spike protein (S protein), 20 are completely occupied by N-glycans, predominantly of the oligomannose type. All seven glycosylation sites in human angiotensin I converting enzyme 2 (hACE2) were found to be completely occupied, mainly by complex N-glycans. However, glycosylation did not directly contribute to the binding affinity between HCoV-19 S protein and hACE2. Additional post-translational modification (PTM) was identified, including multiple methylated sites in both proteins and multiple sites with hydroxylproline in hACE2. Refined structural models of HCoV-19 S protein and hACE2 were built by adding N-glycan and PTMs to recently published cryogenic electron microscopy structures. The PTM and glycan maps of HCoV-19 S protein and hACE2 provide additional structural details for studying the mechanisms underlying host attachment and the immune response of HCoV-19, as well as knowledge for developing desperately needed remedies and vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL